Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 182: 114178, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944783

RESUMO

Brevetoxins (PbTxs) are emerging marine toxins that can lead to Neurotoxic Shellfish Poisoning in humans by the ingestion of contaminated seafood. Recent reports on brevetoxin detection in shellfish in regions where it has not been described before, arise the need of updated guidelines to ensure seafood consumers safety. Our aim was to provide toxicological data for brevetoxin 3 (PbTx3) by assessing oral toxicity in mice and comparing it with intraperitoneal administration. We followed an Up-and-Down procedure administering PbTx3 to mice and registering clinical signs, neuromuscular function, histopathology, and blood changes. Neuromuscular dysfunction like seizures and ataxia, as well as loss of limb strength were observed at 6 h. Performance and clinical signs largely improved at 24 h, time at which no blood biochemical or histological alterations were detected independently of the administration route. However, PbTx3 oral administration results in lower toxicity than intraperitoneal administration. Mortality was only observed at 4000 µg/kg bw PbTx3 administered via oral, but we still found toxicity clinical signs at low toxin doses. We could stablish an oral Lowest-Observable-Adverse-Effect-Level for PbTx3 of 100 µg/kg bw and an oral No-Observable-Adverse-Effect-Level of 10 µg/kg bw in mice. The data here reported should be considered in the evaluation of risks of PbTxs for human health.


Assuntos
Toxinas Marinhas , Animais , Humanos , Camundongos , Toxinas Marinhas/toxicidade , Inocuidade dos Alimentos
2.
Mar Drugs ; 21(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999414

RESUMO

The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Neuroblastoma , Camundongos , Animais , Humanos , Ciguatoxinas/toxicidade , Células HEK293 , Canais de Sódio/metabolismo
3.
Mar Drugs ; 20(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35323497

RESUMO

Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.


Assuntos
Toxinas Marinhas , Microalgas , Poluentes da Água , Animais , Mudança Climática , Humanos , Toxinas Marinhas/análise , Toxinas Marinhas/uso terapêutico , Toxinas Marinhas/toxicidade , Poluentes da Água/análise , Poluentes da Água/uso terapêutico , Poluentes da Água/toxicidade
4.
Arch Toxicol ; 95(8): 2797-2813, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34148100

RESUMO

The consumption of contaminated shellfish with okadaic acid (OA) group of toxins leads to diarrhoeic shellfish poisoning (DSP) characterized by a set of symptoms including nausea, vomiting and diarrhoea. These phycotoxins are Ser/Thr phosphatase inhibitors, which produce hyperphosphorylation in cellular proteins. However, this inhibition does not fully explain the symptomatology reported and other targets could be relevant to the toxicity. Previous studies have indicated a feasible involvement of the nervous system. We performed a set of in vivo approaches to elucidate whether neuropeptide Y (NPY), Peptide YY (PYY) or serotonin (5-HT) was implicated in the early OA-induced diarrhoea. Fasted Swiss female mice were administered NPY, PYY(3-36) or cyproheptadine intraperitoneal prior to oral OA treatment (250 µg/kg). A non-significant delay in diarrhoea onset was observed for NPY (107 µg/kg) and PYY(3-36) (1 mg/kg) pre-treatment. On the contrary, the serotonin antagonist cyproheptadine was able to block (10 mg/kg) or delay (0.1 and 1 mg/kg) diarrhoea onset suggesting a role of 5-HT. This is the first report of the possible involvement of serotonin in OA-induced poisoning.


Assuntos
Diarreia/etiologia , Ácido Okadáico/toxicidade , Serotonina/metabolismo , Animais , Ciproeptadina/farmacologia , Inibidores Enzimáticos/toxicidade , Feminino , Camundongos , Neuropeptídeo Y/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeo YY/metabolismo , Antagonistas da Serotonina/farmacologia , Intoxicação por Frutos do Mar/fisiopatologia , Fatores de Tempo
5.
Mar Drugs ; 19(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430011

RESUMO

Okadaic acid (OA) and its main structural analogs dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine lipophilic phycotoxins distributed worldwide that can be accumulated by edible shellfish and can cause diarrheic shellfish poisoning (DSP). In order to study their toxicokinetics, mice were treated with different doses of OA, DTX1, or DTX2 and signs of toxicity were recorded up to 24 h. Toxin distribution in the main organs from the gastrointestinal tract was assessed by liquid chromatography-mass spectrometry (LC/MS/MS) analysis. Our results indicate a dose-dependency in gastrointestinal absorption of these toxins. Twenty-four hours post-administration, the highest concentration of toxin was detected in the stomach and, in descending order, in the large intestine, small intestine, and liver. There was also a different toxicokinetic pathway between OA, DTX1, and DTX2. When the same toxin doses are compared, more OA than DTX1 is detected in the small intestine. OA and DTX1 showed similar concentrations in the stomach, liver, and large intestine tissues, but the amount of DTX2 is much lower in all these organs, providing information on DSP toxicokinetics for human safety assessment.


Assuntos
Toxinas Marinhas/farmacocinética , Intoxicação por Frutos do Mar , Animais , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Intestinos , Toxinas Marinhas/toxicidade , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Ácido Okadáico/análogos & derivados , Ácido Okadáico/farmacocinética , Frutos do Mar/análise , Estômago , Distribuição Tecidual , Toxicocinética
6.
Toxins (Basel) ; 11(6)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146400

RESUMO

Tetrodotoxin (TTX) is an extremely toxic marine compound produced by different genera of bacteria that can reach humans through ingestion mainly of pufferfish but also of other contaminated fish species, marine gastropods or bivalves. TTX blocks voltage-gated sodium channels inhibiting neurotransmission, which in severe cases triggers cardiorespiratory failure. Although TTX has been responsible for many human intoxications limited toxicological data are available. The recent expansion of TTX from Asian to European waters and diversification of TTX-bearing organisms entail an emerging risk of food poisoning. This study is focused on the acute toxicity assessment of TTX administered to mice by oral gavage following macroscopic and microscopic studies. Necropsy revealed that TTX induced stomach swelling 2 h after administration, even though no ultrastructural alterations were further detected. However, transmission electron microscopy images showed an increase of lipid droplets in hepatocytes, swollen mitochondria in spleens, and alterations of rough endoplasmic reticulum in intestines as hallmarks of the cellular damage. These findings suggested that gastrointestinal effects should be considered when evaluating human TTX poisoning.


Assuntos
Neurotoxinas/toxicidade , Tetrodotoxina/toxicidade , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/ultraestrutura , Retículo Endoplasmático Rugoso/efeitos dos fármacos , Feminino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Intestinos/ultraestrutura , Rim/efeitos dos fármacos , Rim/patologia , Rim/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Paralisia/induzido quimicamente , Convulsões/induzido quimicamente , Baço/efeitos dos fármacos , Baço/patologia , Baço/ultraestrutura , Estômago/efeitos dos fármacos , Estômago/ultraestrutura , Testes de Toxicidade Aguda
7.
Cell Physiol Biochem ; 49(2): 743-757, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30176657

RESUMO

BACKGROUND/AIMS: Okadaic acid (OA) and the structurally related compounds dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine phycotoxins that cause diarrheic shellfish poisoning (DSP) in humans due to ingestion of contaminated shellfish. In order to guarantee consumer protection, the regulatory authorities have defined the maximum level of DSP toxins as 160 µg OA equivalent kg-1 shellfish meat. For risk assessment and overall toxicity determination, knowledge of the relative toxicities of each analogue is required. In absence of enough information from human intoxications, oral toxicity in mice is the most reliable data for establishing Toxicity Equivalence Factors (TEFs). METHODS: Toxins were administered to mice by gavage, after that the symptomatology and mice mortality was registered over a period of 24 h. Organ damage data were collected at necropsy and transmission electron microscopy (TEM) was used for ultrastructural studies. Toxins in urine, feces and blood were analyzed by HPLC-MS/MS. The evaluation of in vitro potencies of OA, DTX1 and DTX2 was performed by the protein phosphatase 2A (PP2A) inhibition assay. RESULTS: Mice that received DSP toxins by gavage showed diarrhea as the main symptom. Those toxins caused similar gastrointestinal alterations as well as intestine ultrastructural changes. However, DSP toxins did not modify tight junctions to trigger diarrhea. They had different toxicokinetics and toxic potency. The lethal dose 50 (LD50) was 487 µg kg-1 bw for DTX1, 760 µg kg-1 bw for OA and 2262 µg kg-1 bw for DTX2. Therefore, the oral TEF values are: OA = 1, DTX1 = 1.5 and DTX2 = 0.3. CONCLUSION: This is the first comparative study of DSP toxins performed with accurate well-characterized standards and based on acute toxicity data. Results confirmed that DTX1 is more toxic than OA by oral route while DTX2 is less toxic. Hence, the current TEFs based on intraperitoneal toxicity should be modified. Also, the generally accepted toxic mode of action of this group of toxins needs to be reevaluated.


Assuntos
Peso Corporal/efeitos dos fármacos , Ácido Okadáico/toxicidade , Piranos/toxicidade , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Coração/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Camundongos , Miocárdio/ultraestrutura , Ácido Okadáico/análise , Ácido Okadáico/urina , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Piranos/análise , Piranos/urina , Estômago/efeitos dos fármacos , Estômago/patologia , Espectrometria de Massas em Tandem , Testes de Toxicidade
8.
Toxins (Basel) ; 10(8)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096904

RESUMO

Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.


Assuntos
Toxinas Marinhas/toxicidade , Intoxicação por Frutos do Mar , Acrilamidas/toxicidade , Animais , Humanos , Ácido Okadáico/toxicidade , Compostos de Espiro/toxicidade
9.
Cell Physiol Biochem ; 43(1): 136-146, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848202

RESUMO

BACKGROUND: Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellates genera Azadinium and Amphidoma. These toxins cause azaspiracid poisoning (AZP), characterized by severe gastrointestinal illness in humans after the consumption of bivalve molluscs contaminated with AZAs. The main aim of the present study was to examine the consequences of human exposure to AZA1 by the study of absorption and effects of the toxin on Caco-2 cells, a reliable model of the human intestine. METHODS: The ability of AZA1 to cross the human intestinal epithelium has been evaluated by the Caco-2 transepithelial permeability assay. The toxin has been detected and quantified using a microsphere-based immunoassay. Cell alterations and ultrastructural effects has been observed with confocal and transmission electron microscopy Results: AZA1 was absorbed by Caco-2 cells in a dose-dependent way without affecting cell viability. However, modifications on occludin distribution detected by confocal microscopy imaging indicated a possible monolayer integrity disruption. Nevertheless, transmission electron microscopy imaging revealed ultrastructural damages at the nucleus and mitochondria with autophagosomes in the cytoplasm, however, tight junctions and microvilli remained unaffected. CONCLUSION: After the ingestion of molluscs with the AZA1, the toxin will be transported through the human intestinal barrier to blood causing damage on epithelial cells.


Assuntos
Toxinas Marinhas/farmacologia , Permeabilidade/efeitos dos fármacos , Compostos de Espiro/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Células CACO-2 , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Dinoflagelados/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Toxinas Marinhas/farmacocinética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Ocludina/metabolismo , Compostos de Espiro/farmacocinética
10.
Anal Chem ; 89(14): 7438-7446, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28648045

RESUMO

Palytoxin (PLTX) is a complex marine toxin produced by Zoanthids (Palyhtoa), dinoflagellates (Ostreopsis), and cyanobacteria (Trichodesmium). Contact with PLTX-like compounds present in aerosols or marine organisms has been associated with adverse effects on humans. The worldwide distribution of producer species and seafood contaminated with PLTX-like molecules illustrates the global threat to human health. The identification of species capable of palytoxin production is critical for human safety. We studied the presence of PLTX analogues in Palythoa canariensis, a coral species collected in the Atlantic Ocean never described as a PLTX-producer before. Two methodologies were used for the detection of these toxins: a microsphere-based immunoassay that offered an estimation of the content of PLTX-like molecules in a Palythoa canariensis extract and an ultrahigh-pressure liquid chromatography coupled to an ion trap with a time-of-flight mass spectrometer (UPLC-IT-TOF-MS) that allowed the characterization of the toxin profile. The results demonstrated the presence of PLTX, hydroxy-PLTX and, at least, two additional compounds with PLTX-like profile in the Palythoa canariensis sample. The PLTX content was estimated in 0.27 mg/g of lyophilized coral using UPLC-IT-TOF-MS. Therefore, this work demonstrates that Palythoa canariensis produces a mixture of PLTX-like molecules. This is of special relevance to safeguard human health considering Palythoa species are commonly used for decoration by aquarium hobbyists.


Assuntos
Acrilamidas/análise , Venenos de Cnidários/análise , Animais , Antozoários , Estrutura Molecular
11.
Toxins (Basel) ; 9(3)2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28245573

RESUMO

Tetrodotoxin (TTX) is starting to appear in molluscs from the European waters and is a hazard to seafood consumers. This toxin blocks sodium channels resulting in neuromuscular paralysis and even death. As a part of the risk assessment process leading to a safe seafood level for TTX, oral toxicity data are required. In this study, a 4-level Up and Down Procedure was designed in order to determine for the first time the oral lethal dose 50 (LD50) and the No Observed Adverse Effect Level (NOAEL) in mice by using an accurate well-characterized TTX standard.


Assuntos
Tetrodotoxina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Dose Letal Mediana , Camundongos , Nível de Efeito Adverso não Observado
12.
Toxicon ; 129: 74-80, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28209479

RESUMO

Yessotoxin (YTX) is a marine phycotoxin produced by dinoflagellates and accumulated in filter feeding shellfish. YTX content in shellfish is regulated by many food safety authorities to protect human health, although currently no human intoxication episodes have been unequivocally related to YTX presence in food. The immune system has been proposed as one of the target organs of YTX due to alterations of lymphoid tissues and cellular and humoral components. The aim of the present study was to explore subacute immunotoxicity of YTX in rats by evaluating the haematological response, inflammatory cytokine biomarkers and the presence of YTX-induced structural alterations in the spleen and thymus. The results showed that repeated administrations of YTX caused a decrease of lymphocyte percentage and an increase of neutrophil counts, a reduction in interleukine-6 (IL-6) plasmatic levels and histopathological splenic alterations in rats after four intraperitoneal injections of YTX at doses of 50 or 70 µg/kg that were administered every 4 days along a period of 15 days. Therefore, for the first time, subacute YTX-immunotoxicity is reported in rats, suggesting that repeated exposures to low amounts of YTX might also suppose a threat to human health, especially in immuno-compromised populations.


Assuntos
Imunotoxinas/toxicidade , Oxocinas/toxicidade , Frutos do Mar/análise , Animais , Biomarcadores/sangue , Dinoflagelados/metabolismo , Relação Dose-Resposta a Droga , Feminino , Contaminação de Alimentos , Inocuidade dos Alimentos , Interleucina-6/sangue , Contagem de Linfócitos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Venenos de Moluscos , Neutrófilos/citologia , Oxocinas/imunologia , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Baço/patologia , Timo/efeitos dos fármacos , Timo/patologia , Fator de Necrose Tumoral alfa/sangue
13.
Food Chem Toxicol ; 102: 166-175, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28223118

RESUMO

Ingestion of shellfish with dinophysistoxin-2 (DTX2) can lead to diarrheic shellfish poisoning (DSP). The official control method of DSP toxins in seafood is the liquid chromatography-mass spectrometry analysis (LC-MS). However in order to calculate the total toxicity of shellfish, the concentration of each compound must be multiplied by individual Toxicity Equivalency Factor (TEF). Considering that TEFs caused some controversy and the scarce information about DTX2 toxicity, the aim of this study was to characterize the oral toxicity of DTX2 in mice. A 4-Level Up and Down Procedure allowed the characterization of DTX2 effects and the estimation of DTX2 oral TEF based on determination of the lethal dose 50 (LD50). DTX2 passed the gastrointestinal barrier and was detected in urine and feces. Acute toxicity symptoms include diarrhea and motionless, however anatomopathology study and ultrastructural images restricted the toxin effects to the gastrointestinal tract. Nevertheless enterocytes microvilli and tight junctions were not altered, disconnecting DTX2 diarrheic effects from paracellular epithelial permeability. This is the first report of DTX2 oral LD50 (2262 µg/kg BW) indicating that its TEF is about 0.4. This result suggests reevaluation of the present TEFs for the DSP toxins to better determine the actual risk to seafood consumers.


Assuntos
Piranos/administração & dosagem , Piranos/toxicidade , Testes de Toxicidade/métodos , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida/métodos , Ingestão de Alimentos/efeitos dos fármacos , Fezes/química , Feminino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Intestinos/ultraestrutura , Dose Letal Mediana , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Toxinas Marinhas/administração & dosagem , Toxinas Marinhas/farmacocinética , Toxinas Marinhas/toxicidade , Camundongos , Ácido Okadáico/análogos & derivados , Piranos/farmacocinética , Espectrometria de Massas em Tandem/métodos
14.
Arch Toxicol ; 91(4): 1859-1870, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27709272

RESUMO

Yessotoxins (YTX) and azaspiracids (AZAs) are marine toxins produced by phytoplanktonic dinoflagellates that get accumulated in filter feeding shellfish and finally reach human consumers through the food web. Both toxin classes are worldwide distributed, and food safety authorities have regulated their content in shellfish in many countries. Recently, YTXs and AZAs have been described as compounds with subacute cardiotoxic potential in rats owed to alterations of the cardiovascular function and ultrastructural heart damage. These molecules are also well known in vitro inducers of cell death. The aim of this study was to explore the presence of cardiomyocyte death after repeated subacute exposure of rats to AZA-1 and YTX for 15 days. Because autophagy and apoptosis are often found in dying cardiomyocytes, several autophagic and apoptotic markers were determined by western blot in heart tissues of these rats. The results showed that hearts from YTX-treated rats presented increased levels of the autophagic markers microtubule-associated protein light chain 3-II (LC3-II) and beclin-1, nevertheless AZA-1-treated hearts evidenced increased levels of the apoptosis markers cleaved caspase-3 and -8, cleaved PARP and Fas ligand. Therefore, while YTX-induced damage to the heart triggers autophagic processes, apoptosis activation occurs in the case of AZA-1. For the first time, activation of cell death signals in cardiomyocytes is demonstrated for these toxins with in vivo experiments, which may be related to alterations of the cardiovascular function.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Oxocinas/toxicidade , Compostos de Espiro/toxicidade , Animais , Biomarcadores/metabolismo , Western Blotting , Feminino , Toxinas Marinhas/administração & dosagem , Venenos de Moluscos , Oxocinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Compostos de Espiro/administração & dosagem , Fatores de Tempo , Testes de Toxicidade Subaguda/métodos
15.
Chem Res Toxicol ; 29(6): 981-90, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27104637

RESUMO

Yessotoxin (YTX) is a marine phycotoxin produced by dinoflagellates and accumulated in filter feeding shellfish. Although no human intoxication episodes have been reported, YTX content in shellfish is regulated by many food safety authorities due to their worldwide distribution. YTXs have been related to ultrastructural heart damage in vivo, but the functional consequences in the long term have not been evaluated. In this study, we explored the accumulative cardiotoxic potential of YTX in vitro and in vivo. Preliminary in vitro evaluation of cardiotoxicity was based on the effect on hERG (human ether-a-go-go related gene) channel trafficking. In vivo experiments were performed in rats that received repeated administrations of YTX followed by recordings of electrocardiograms, arterial blood pressure, plasmatic cardiac biomarkers, and analysis of myocardium structure and ultrastructure. Our results showed that an exposure to 100 nM YTX for 12 or 24 h caused an increase of extracellular surface hERG channels. Furthermore, remarkable bradycardia and hypotension, structural heart alterations, and increased plasma levels of tissue inhibitor of metalloproteinases-1 were observed in rats after four intraperitoneal injections of YTX at doses of 50 or 70 µg/kg that were administered every 4 days along a period of 15 days. Therefore, and for the first time, YTX-induced subacute cardiotoxicity is supported by evidence of cardiovascular function alterations related to its repeated administration. Considering international criteria for marine toxin risk estimation and that the regulatory limit for YTX has been recently raised in many countries, YTX cardiotoxicity might pose a health risk to humans and especially to people with previous cardiovascular risk.


Assuntos
Cardiotoxinas/toxicidade , Doenças Cardiovasculares/metabolismo , Coração/efeitos dos fármacos , Oxocinas/toxicidade , Animais , Células CHO , Cardiotoxicidade , Cardiotoxinas/administração & dosagem , Cardiotoxinas/química , Células Cultivadas , Cricetulus , Canal de Potássio ERG1/metabolismo , Humanos , Injeções Intraperitoneais , Conformação Molecular , Venenos de Moluscos , Oxocinas/administração & dosagem , Oxocinas/química , Ratos , Ratos Sprague-Dawley
16.
Toxicol Lett ; 250-251: 10-20, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27050798

RESUMO

Goniodomin A is a phycotoxin produced by the dinoflagellates Alexandrium hiranoi (formerly Goniodoma pseudogoniaulax) and Alexandrium monilatum. This polyether macrolide exerts a potent antifungal effect and disturbs the actomyosin ATPase activity and the F-actin meshwork in diverse cell types. Goniodomin B is a fused acetal isomer isolated with goniodomin A with unknown activity. Histopathological changes induced by goniodomin A postulated hepatocytes as target cells. In this study both compounds induce a time and concentration dependent fall in the viability of Clone 9 rat hepatocytes. Furthermore, for both compounds, primary rat hepatocytes are almost 10 folds less sensitive than Clone 9 cells. Goniodomin A is highly effective in the nanomolar range while micromolar concentrations of goniodomin B are necessary to observe cytoxicity. Additionally, goniodomin A induced a significant increase in the F-actin and decrease in the G-actin content of Clone 9 cells but did not change the actin of primary cultured hepatocytes. However, goniodomin B could not exert significant alterations in the cytoskeleton of neither cell type. Futhermore goniodomin A as well as goniodomin B are cytotoxic to excitable cells. Both analogues triggered a time dependent decrease on viability in BE(2)-M17 human neuroblastoma cells. In this cell model goniodomin A increased the intracellular calcium and depolarized cells. We conclude that goniodomins A and B are biologically active molecules in hepatocytes and also in excitable cells BE(2)-M17. However, the analogue goniodomin B, whose activity is described in this work for the first time, is a much less potent compound.


Assuntos
Éteres/toxicidade , Hepatócitos/efeitos dos fármacos , Macrolídeos/toxicidade , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
17.
Toxicol Sci ; 151(1): 104-14, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26865666

RESUMO

Azaspiracids (AZAs) are marine toxins produced by Azadinium spinosum that get accumulated in filter feeding shellfish through the food-web. The first intoxication was described in The Netherlands in 1990, and since then several episodes have been reported worldwide. Azaspiracid-1, AZA-2, and AZA-3 presence in shellfish is regulated by food safety authorities of several countries to protect human health. Azaspiracids have been related to widespread organ damage, tumorogenic properties and acute heart rhythm alterations in vivo but the mechanism of action remains unknown. Azaspiracid toxicity kinetics in vivo and in vitro suggests accumulative effects. We studied subacute cardiotoxicity in vivo after repeated exposure to AZA-1 by evaluation of the ECG, arterial blood pressure, plasmatic heart damage biomarkers, and myocardium structure and ultrastructure. Our results showed that four administrations of AZA-1 along 15 days caused functional signs of heart failure and structural heart alterations in rats at doses ranging from 1 to 55 µg/kg. Azaspiracid-1 altered arterial blood pressure, tissue inhibitors of metalloproteinase-1 plasma levels, heart collagen deposition, and ultrastructure of the myocardium. Overall, these data indicate that repeated exposure to low amounts of AZA-1 causes cardiotoxicity, at doses that do not induce signs of other organic system toxicity. Remarkably, human exposure to AZAs considering current regulatory limits of these toxins may be dangerously close to clearly cardiotoxic doses in rats. These findings should be considered when human risk is estimated particularly in high cardiovascular risk subpopulations.


Assuntos
Insuficiência Cardíaca/induzido quimicamente , Toxinas Marinhas/toxicidade , Compostos de Espiro/toxicidade , Animais , Pressão Arterial/efeitos dos fármacos , Biomarcadores/sangue , Cardiotoxicidade , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Mediadores da Inflamação/sangue , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Ratos Sprague-Dawley , Medição de Risco , Fatores de Tempo , Testes de Toxicidade Subaguda
18.
Anal Chim Acta ; 903: 1-12, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26709295

RESUMO

Palytoxin (PLTX) is a complex marine toxin produced by zoanthids (i.e. Palythoa), dinoflagellates (Ostreopsis) and cyanobacteria (Trichodesmium). PLTX outbreaks are usually associated with Indo-Pacific waters, however their recent repeated occurrence in Mediterranean-European Atlantic coasts demonstrate their current worldwide distribution. Human sickness and fatalities have been associated with toxic algal blooms and ingestion of seafood contaminated with PLTX-like molecules. These toxins represent a serious threat to human health. There is an immediate need to develop easy-to-use, rapid detection methods due to the lack of validated protocols for their detection and quantification. We have developed an immuno-detection method for PLTX-like molecules based on the use of microspheres coupled to flow-cytometry detection (Luminex 200™). The assay consisted of the competition between free PLTX-like compounds in solution and PLTX immobilized on the surface of microspheres for binding to a specific monoclonal anti-PLTX antibody. This method displays an IC50 of 1.83 ± 0.21 nM and a dynamic range of 0.47-6.54 nM for PLTX. An easy-to-perform extraction protocol, based on a mixture of methanol and acetate buffer, was applied to spiked mussel samples providing a recovery rate of 104 ± 8% and a range of detection from 374 ± 81 to 4430 ± 150 µg kg(-1) when assayed with this method. Extracts of Ostreopsis cf. siamensis and Palythoa tuberculosa were tested and yielded positive results for PLTX-like molecules. However, the data obtained for the coral sample suggested that this antibody did not detect 42-OH-PLTX efficiently. The same samples were further analyzed using a neuroblastoma cytotoxicity assay and UPLC-IT-TOF spectrometry, which also pointed to the presence of PLTX-like compounds. Therefore, this single detection method for PLTX provides a semi-quantitative tool useful for the screening of PLTX-like molecules in different matrixes.


Assuntos
Acrilamidas/análise , Imunoensaio/métodos , Venenos de Cnidários , Citometria de Fluxo , Humanos
19.
Toxicol Lett ; 237(2): 151-60, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26086426

RESUMO

Okadaic acid (OA) and dinophysistoxins (DTXs) are a group of marine toxins that cause diarrheic shellfish poisoning (DSP) in humans and animals. These compounds are produced by dinoflagellates of the Prorocentrum and Dinophysis genera and can accumulate in filter-feeding bivalves, posing a serious health risk for shellfish consumers. The enteric nervous system (ENS) plays a crucial role in the regulation of the gastrointestinal tract. In addition, neuropeptides produced by ENS affects the epithelial barrier functions. In the present work we used a two-compartment human coculture model containing the SH-SY5Y neuroblastoma cell line and polarized colonic epithelial monolayers (Caco-2) to study the OA intestinal permeability. First, we have determined OA cytotoxicity and we have found that OA reduces the viability of SH-SY5Y in a dose-dependent way, even though DTX1 is 4 to 5 times more potent than OA. Besides DTX1 is 15 to 18 orders of magnitude more potent than OA in decreasing transepithelial electrical resistance (TEER) of caco-2 cells without inducing cytotoxicity. Permeability assays indicate that OA cross the monolayer and modulates the neuropeptide Y (NPY) secretion by neuroblastoma cells. This NPY also affects the permeability of OA. This offers a novel approach to establish the influence of OA neuronal action on their diarrheic effects through a cross talk between ENS and intestine via OA induced NPY secretion. Therefore, the OA mechanisms of toxicity that were long attributed only to the inhibition of protein phosphatases, would require a reevaluation.


Assuntos
Diarreia/induzido quimicamente , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/análise , Ácido Okadáico/toxicidade , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Humanos , Neuroblastoma/patologia , Piranos/toxicidade
20.
Toxins (Basel) ; 7(4): 1030-47, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25826053

RESUMO

Phycotoxins are marine toxins produced by phytoplankton that can get accumulated in filter feeding shellfish. Human intoxication episodes occur due to contaminated seafood consumption. Okadaic acid (OA) and dynophysistoxins (DTXs) are phycotoxins responsible for a severe gastrointestinal syndrome called diarrheic shellfish poisoning (DSP). Yessotoxins (YTXs) are marine toxins initially included in the DSP class but currently classified as a separated group. Food safety authorities from several countries have regulated the content of DSPs and YTXs in shellfish to protect human health. In mice, OA and YTX have been associated with ultrastructural heart damage in vivo. Therefore, this study explored the potential of OA, DTX-1 and YTX to cause acute heart toxicity. Cardiotoxicity was evaluated in vitro by measuring hERG (human èter-a-go-go gene) channel activity and in vivo using electrocardiogram (ECG) recordings and cardiac damage biomarkers. The results demonstrated that these toxins do not exert acute effects on hERG channel activity. Additionally, in vivo experiments showed that these compounds do not alter cardiac biomarkers and ECG in rats acutely. Despite the ultrastructural damage to the heart reported for these toxins, no acute alterations of heart function have been detected in vivo, suggesting a functional compensation in the short term.


Assuntos
Cardiotoxicidade , Ácido Okadáico/toxicidade , Oxocinas/toxicidade , Piranos/toxicidade , Animais , Células CHO , Cardiotoxicidade/sangue , Cardiotoxicidade/fisiopatologia , Cricetinae , Cricetulus , Canal de Potássio ERG1 , Eletrocardiografia , Canais de Potássio Éter-A-Go-Go/fisiologia , Feminino , Venenos de Moluscos , Peptídeo Natriurético Encefálico/sangue , Ratos , Ratos Sprague-Dawley , Troponina I/sangue , Troponina T/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...